Electric field profile structure—especially its shear—is a natural order parameter for the edge plasma, and characterizes confinement regimes ranging from the H-mode (Wagner
et al.
1982
Phys. Rev. Lett.
49
, 1408–1412 (
doi:10.1103/PhysRevLett.49.1408
)) to the density limit (DL) (Greenwald
et al.
1988
Nucl. Fusion
28
, 2199–2207 (
doi:10.1088/0029-5515/28/12/009
)). The theoretical developments and lessons learned during 40 years of H-mode studies (Connor & Wilson 1999
Plasma Phys. Control. Fusion
42
, R1–R74 (
doi:10.1088/0741-3335/42/1/201
); Wagner 2007
Plasma Phys. Control. Fusion
49
, B1–B33 (
doi:10.1088/0741-3335/49/12b/s01
)) are applied to the shear layer collapse paradigm (Hong
et al.
2017
Nucl. Fusion
58
, 016041 (
doi:10.1088/1741-4326/aa9626
)) for the onset of DL phenomena. Results from recent experiments on edge shear layers and DL phenomenology are summarized and discussed in the light of L
→
H transition physics. The theory of shear layer collapse is then developed. We demonstrate that shear layer physics captures both the well known current (Greenwald) scaling of the DL (Greenwald 2002
Plasma Phys. Control. Fusion
44
, R27–R53 (
doi:10.1088/0741-3335/44/8/201
); Greenwald
et al.
2014
Phys. Plasmas
21
, 110501 (
doi:10.1063/1.4901920
)), as well as the emerging power scaling (Zanca, Sattin, JET Contributors 2019
Nucl. Fusion
59
, 126011 (
doi:10.1088/1741-4326/ab3b31
)). The derivation of the power scaling theory exploits an existing model, originally developed for the L
→
H transition (Diamond, Liang, Carreras, Terry 1994
Phys. Rev. Lett.
72
, 2565–2568 (
doi:10.1103/PhysRevLett.72.2565
); Kim & Diamond 2003
Phys. Rev. Lett.
90
, 185006 (
doi:10.1103/PhysRevLett.90.185006
)). We describe the enhanced particle transport events that occur following shear layer collapse. Open problems and future directions are discussed.
This article is part of a discussion meeting issue ‘H-mode transition and pedestal studies in fusion plasmas’.