2023
DOI: 10.1090/proc/16267
|View full text |Cite
|
Sign up to set email alerts
|

Bounds on the Picard rank of toric Fano varieties with minimal curve constraints

Abstract: We study the Picard rank of smooth toric Fano varieties constrained to possess families of minimal rational curves of given degree. We discuss variants of a conjecture of Chen–Fu–Hwang and prove a version of their statement that recovers the original conjecture in sufficiently high dimension. We also prove new cases of the original conjecture for high degrees in all dimensions. Our main tools come from toric Mori theory and the combinatorics of Fano polytopes.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 17 publications
0
0
0
Order By: Relevance