One of the most important problems in III-nitride violet laser diode technology is the lattice mismatch between the AlGaN cladding layers and the rest of the epitaxial structure. For efficiently working devices, it is necessary to have both a high Al content and thick claddings. This leads, however, to severe sample bowing and even cracking of the upper layer. In this work, we propose a cladding structure of strain-compensated AlGaN∕GaN∕InGaN superlattice grown by metal-organic vapor phase epitaxy on bulk GaN substrates. Various thicknesses and compositions of the layers were employed. We measured the radius of bowing, lattice mismatches, aluminum and indium contents, and densities of threading dislocations. The proposed cladding structures suppress bowing and cracking, which are the two parasitic effects commonly experienced in laser diodes with bulk AlGaN claddings. The suppression of cracking and bowing is shown to occur due to modified strain energy distribution of the superlattices structure.