2022
DOI: 10.21203/rs.3.rs-1143834/v2
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Brain Computer Interface-EEG based Imagined Word Prediction Using Convolutional Neural Network Visual Stimuli for Speech Disability

Abstract: Brain Computer Interface (BCI) is one of the fast-growing technological trends, which finds its applications in the field of the healthcare sector. In this work, 16 electrodes of Electroencephalography (EEG) placed according to the 10-20 electrode system are used to acquire the EEG signals. A BCI with EEG based imagined word prediction using Convolutional Neural Network (CNN) is modeled and trained to recognize the words imagined through the EEG brain signal, where the CNN model Alexnet and Googlenet are able … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?