3,4-Methylenedioxymethcathinone (methylone) and 3,4-methylenedioxypyrovalerone (MDPV) are new drugs of abuse that have gained worldwide popularity. These drugs are structurally similar to 3,4-methylenedioxymethamphetamine (MDMA) and share many of its physiological and behavioral effects in humans, including the development of hyperthermia during acute intoxication. Here, we examined the effects of methylone (1-9 mg/kg, s.c.) or MDPV (0.1-1.0 mg/kg, s.c.) on brain temperature homeostasis in rats maintained in a standard laboratory environment (single-housed in a quiet rest at 22 1C) and under conditions that model human drug use (social interaction and 29 1C ambient temperature). By simultaneously monitoring temperatures in the nucleus accumbens, temporal muscle, and facial skin, we assessed the effects of methylone and MDPV on intra-brain heat production and cutaneous vascular tone, two critical factors that control brain temperature responses. Both methylone and MDPV dose-dependently increased brain temperature, but even at high doses that induced robust locomotor activation, hyperthermia was modest in magnitude (up to B2 1C). Both drugs also induced dose-dependent peripheral vasoconstriction, which appears to be a primary mechanism determining the brain hyperthermic responses. In contrast to the powerful potentiation of MDMA-induced hyperthermia by social interaction and warm ambient temperature, such potentiation was absent for methylone and minimal for MDPV. Taken together, despite structural similarities to MDMA, exposure to methylone or MDPV under conditions commonly associated with human drug use does not lead to profound elevations in brain temperature and sustained vasoconstriction, two critical factors associated with MDMA toxicity.