Abstract:Research in Alzheimer's disease (AD) has seen a tremendous growth of candidate biomarkers in the last decade. The role of such established or putative biomarkers is to allow an accurate diagnosis of AD, to infer about its prognosis, to monitor disease progression and evaluate changes induced by disease-modifying drugs. An ideal biomarker should detect a specific pathophysiological feature of AD, not present in the healthy condition, in other primary dementias, or in confounding conditions. Besides being reliable, a biomarker should be detectable by means of procedures which must be relatively non-invasive, simple to perform, widely available and not too expensive. At present, no candidate meets these requirements representing the high standards aimed at by researchers. Among others, various morphological brain measures performed by means of magnetic resonance imaging (MRI), ranging from the total brain volume to some restricted regions such as the hippocampal volume, have been proposed. Nowadays the efforts are directed toward finding an automated, unsupervised method of evaluating atrophy in some specific brain region, such as the medial temporal lobe (MTL). In this work we provide an extensive review of the state of the art on the automatic and semi-automatic image processing techniques for the early assessment of patients at risk of developing AD. Our main focus is the relevance of the morphological analysis of MTL, and in particular of the hippocampal formation, in making the diagnosis of AD and in distinguishing it from other dementias.