2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2017
DOI: 10.1109/embc.2017.8037591
|View full text |Cite
|
Sign up to set email alerts
|

Brain segmentation in MR images using a texture-based classifier associated with mathematical morphology

Abstract: Skull stripping, which refers to the segmentation of brain tissue from non-brain tissue, has been challenging due to the ramification of the human brain structures and volatile parameters in the magnetic resonance imaging (MRI) procedures. It has been one of the most critical preprocessing steps in medical image analysis. We propose a hybrid skull stripping algorithm that is based on texture feature analysis, fuzzy possibilistic c-means (FPCM), and morphological operations. The input MR image is first processe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
2
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 9 publications
0
2
0
1
Order By: Relevance
“…Este proceso ayudó a identificar el límite cerebral mejor que otros métodos. Para (Chang & Hsieh, 2017), surgía un reto más grande; separar el tejido cerebral de tejido no cerebral, ya que representaba un problema mayor al realizar la segmentación del cerebro, por ello, presentaron un algoritmo de extracción de cráneo basado en la combinación de análisis de características de textura de imagen y morfología matemática. Este algoritmo obtenía dos mapas de características de textura, donde uno correspondía a una máscara cerebrales y el otro a una máscara no cerebral.…”
Section: Introductionunclassified
“…Este proceso ayudó a identificar el límite cerebral mejor que otros métodos. Para (Chang & Hsieh, 2017), surgía un reto más grande; separar el tejido cerebral de tejido no cerebral, ya que representaba un problema mayor al realizar la segmentación del cerebro, por ello, presentaron un algoritmo de extracción de cráneo basado en la combinación de análisis de características de textura de imagen y morfología matemática. Este algoritmo obtenía dos mapas de características de textura, donde uno correspondía a una máscara cerebrales y el otro a una máscara no cerebral.…”
Section: Introductionunclassified
“…Principal component analysis [ 1 ], fuzzy c-means Hsieh [ 2 ], Gabor filter [ 3 ], and multilevel fuzzy c-means [ 4 ] are examples of traditional machine learning techniques. However, the performance of these algorithms in the field of computer vision is not sufficient.…”
Section: Introductionmentioning
confidence: 99%
“…Quantitative imaging may reveal information about disease characteristics and their impact on complex anatomical structures, enabling research to gain knowledge about disease pathophysiology. The relationships [5] between different lesion types, their spatial distribution, and extent, as well as acute and chronic effects, are still frequently overlooked. Reference [6] Morphological image processing adopts the aim of eliminating these defects by optimizing the shape and composition of the image.…”
Section: Introductionmentioning
confidence: 99%