2018
DOI: 10.1155/2018/3956536
|View full text |Cite
|
Sign up to set email alerts
|

Brain State Decoding Based on fMRI Using Semisupervised Sparse Representation Classifications

Abstract: Multivariate classification techniques have been widely applied to decode brain states using functional magnetic resonance imaging (fMRI). Due to variabilities in fMRI data and the limitation of the collection of human fMRI data, it is not easy to train an efficient and robust supervised-learning classifier for fMRI data. Among various classification techniques, sparse representation classifier (SRC) exhibits a state-of-the-art classification performance in image classification. However, SRC has rarely been ap… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 23 publications
0
0
0
Order By: Relevance