Encoding artificial perceptions through brain stimulation, especially that of higher cognitive functions such as speech perception, is one of the most formidable challenges in brain-computer interfaces (BCI). Brain stimulation has been used for functional mapping in clinical practices for the last 70 years to treat various disorders affecting the nervous system, including epilepsy, Parkinson’s disease, essential tremors, and dystonia. Recently, direct electrical stimulation has been used to evoke various forms of perception in humans, ranging from sensorimotor, auditory, and visual to speech cognition. Successfully evoking and fine-tuning artificial perceptions could revolutionize communication for individuals with speech disorders and significantly enhance the capabilities of brain-computer interface technologies. However, despite the extensive literature on encoding various perceptions and the rising popularity of speech BCIs, inducing artificial speech perception is still largely unexplored, and its potential has yet to be determined. In this paper, we examine the various stimulation techniques used to evoke complex percepts and the target brain areas for the input of speech-like information. Finally, we discuss strategies to address the challenges of speech encoding and discuss the prospects of these approaches.