Registration is the process of spatially and/or temporally aligning different images. It is a critical tool that can facilitate the automatic tracking of pathological changes detected in radiological images and align images captured by different imaging systems and/or those acquired using different acquisition parameters. The longitudinal analysis of clinical changes has a significant role in helping clinicians evaluate disease progression and determine the most suitable course of treatment for patients. This study provides a comprehensive review of the role registration-based approaches play in automated change tracking in radiological imaging and explores the three types of registration approaches which include rigid, affine, and nonrigid registration, as well as methods of detecting and quantifying changes in registered longitudinal images: the intensity-based approach and the deformation-based approach. After providing an overview and background, we highlight the clinical applications of these methods, specifically focusing on computed tomography (CT) and magnetic resonance imaging (MRI) in tumors and multiple sclerosis (MS), two of the most heavily studied areas in automated change tracking. We conclude with a discussion and recommendation for future directions.