Proton therapy (PT) has been administered for many years to a number of cancers, including brain tumours. Due to their remarkable physical properties, delivering their radiation to a very precise brain volume with no exit dose, protons are particularly appropriate for these tumours. The decrease of the brain integral dose may translate with a diminution of neuro-cognitive toxicity and increase of quality of life, particularly so in children. The brain tumour patient’s access to PT will be substantially increased in the future, with many new facilities being planned or currently constructed in Europe, Asia and the United States. Although approximately 150’000 patients have been treated with PT, no level I evidence has been demonstrated for this treatment. As such, it is this necessary to generate high-quality data and some new prospective trials will include protons or will be activated to compare photons to protons in a randomized design. PT comes however with an additional cost factor that may contribute to the ever-growing health’s expenditure allocated to cancer management. These additional costs and financial toxicity will have to be analysed in the light of a more conformal radiation delivery, non-target brain irradiation and lack of potential for dose escalation when compared to photons. The latter is due to the radiosensitivity of organs at risk in vicinity of the brain tumour, that photons cannot spare optimally. Consequentially, radiation-induced toxicities and tumour recurrences, which are cost-intensive, may decrease with PT resulting in an optimized photon/proton financial ratio in the end. Advances in knowledge: This review details the indication of brain tumors for proton therapy and give a list of the open prospective trials for these challenging tumors.