Summary
Cross-coupling reactions between aryl iodide and nucleophiles have been well developed. Iodoniums equipped with a reactive C-I(III) bond accelerate cross-coupling reactions of aryl iodide. Among them, cyclic diaryliodoniums are more atom economical; however; they are often in the trap of metal reliance and encounter regioselectivity issues. Now, we have developed a series of highly reactive cyclic monoaryl-vinyl iodoniums that can be tuned to construct C-N, C-O, and C-C bonds without metal catalysis. Under promotion of triethylamine, coupling reactions with aniline, phenol, aromatic acid, and indole proceed rapidly and regioselectively at room temperature. The carbene species is conceptualized as a key intermediate in our mechanism model. Furthermore, the coupling products enable diversity-oriented synthesis strategy to further build up a chemical library of diverse heterocyclic fragments that are in demand in the drug discovery field. Our current work provides a deep insight into the synthetic application of these highly reactive cyclic iodoniums.