Abstract:For a branched locally isometric covering of metric spaces with intrinsic metrics, it is proved that the Steiner ratio of the base is not less than the Steiner ratio of the total space of the covering. As applications, it is shown that the Steiner ratio of the surface of an isosceles tetrahedron is equal to the Steiner ratio of the Euclidean plane, and that the Steiner ratio of a flat cone with angle of 2π/k at its vertex is also equal to the Steiner ratio of the Euclidean plane.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.