Breast cancer (BC) is the most common type of cancer in women worldwide, and despite advances in treatments, its incidence and mortality are increasing. Therefore, it is necessary to develop new, non-invasive tests that provide more accurate diagnosis and prognosis in a timely manner. A promising approach is measuring the presence of biomarkers to detect tumors at various stages and determine their specific characteristics, thus allowing for more personalized treatment. MicroRNAs (miRNAs) serve a role in gene expression, primarily by interacting with messenger RNAs, and may be potential biomarkers for detecting cancer. They are detectable in tissues and blood, including plasma and/or serum, are stable and often tumor specific. Also, different miRNAs are associated with specific BC molecular subtypes. Triple-negative BC (TNBC) is a type of BC in which the primary targets for hormonal therapy are absent. It is an aggressive phenotype, which frequently metastasizes and is associated with an unfavorable prognosis. The present review focuses on circulating miRNAs in patients with TNBC, with an emphasis on their interaction with the immune response checkpoint genes PD-1, PD-L1 and CTLA4. Modulation and response of the immune system are of interest in cancer treatment due to the success of immunotherapy in the treatment of various neoplasms. Based on the findings of this literature review and the in silico analysis performed as part of this review, it is concluded that circulating hsa-miR-195 and hsa-miR-155 in TNBC interact with checkpoint genes involved in the immune response. Further analysis of the expression of these circulating miRNAs and their association with prognosis in patients with TNBC treated with immunotherapy should be assessed to evaluate their possible use as non-invasive predictive biomarkers. In addition, functional studies to analyze biologically relevant targets in the development and prognosis of TNBC, which could be therapeutic targets, are also recommended. Contents 1. Introduction 2. miRNAs as biomarkers in BC 3. Circulating miRNAs in BC 4. Checkpoints and miRNAs in TNBC 5. Conclusions