Multicolour genomic in situ hybridization (mcGISH) using total genomic DNA probes from Thinopyrum
bessarabicum (Săvulescu & Rayss, 1923) Á. Löve, 1984 (genome Jb or Eb, 2n = 14), and Pseudoroegneria
spicata (Pursh, 1814) Á. Löve, 1980 (genome St, 2n = 14) was used to characterize the mitotic metaphase chromosomes of a synthetic hybrid of Thinopyrum
intermedium (Host, 1805) Barkworth & D.R. Dewey, 1985 and Thinopyrum
ponticum (Podpěra, 1902) Z.-W. Liu et R.-C.Wang, 1993 named „Agropyron glael” and produced by N.V. Tsitsin in the former Soviet Union. The mcGISH pattern of this synthetic hybrid was compared to its parental wheatgrass species. Hexaploid Thinopyrum
intermedium contained 19 J, 9 JSt and 14 St chromosomes. The three analysed Thinopyrum
ponticum accessions had different chromosome compositions: 43 J + 27 JSt (PI531737), 40 J + 30 JSt (VIR-44486) and 38 J + 32 JSt (D-3494). The synthetic hybrid carried 18 J, 28 JSt and 8 St chromosomes, including one pair of J-St translocation and/or decreased fluorescent intensity, resulting in unique hybridization patterns. Wheat line Mv9kr1 was crossed with the Thinopyrum
intermedium × Thinopyrum
ponticum synthetic hybrid in Hungary in order to transfer its advantageous agronomic traits (leaf rust and yellow rust resistance) into wheat. The chromosome composition of a wheat/A.glael F1 hybrid was 21 wheat + 28 wheatgrass (11 J + 14 JSt+ 3 S). In the present study, mcGISH involving the simultaneous use of St and J genomic DNA as probes provided information about the type of Thinopyrum chromosomes in a Thinopyrum
intermedium/Thinopyrum
ponticum synthetic hybrid called A. glael.