Abiotic stresses including salinity, drought, extreme temperatures, and heavy metals are posing serious threats to agricultural yields as well as the quality of produce. This necessitates the production of cultivars capable to withstand the harsh environmental conditions without substantial yield losses. Owing to the complexity underlying stress tolerance traits, conventional breeding techniques have met with limited success and demand effective supplements to feed the growing food demands worldwide. This necessitates the development and deployment of novel and potent approaches, and engineering of phytohormone metabolism could be a method of choice to produce climate resilient crops with higher yields. Phytohormones are considered critical for regulating and coordinating plant growth and development; however, in recent years, they have received great attention for their multifunctional roles in plant responses to environmental stimuli. Creditable research has shown that phytohormones including the classical ones -auxins, cytokinins, ethylene, gibberellins, and newer members including brassinosteroids, jasmonates, and strigolactones -may prove to be potent targets for their metabolic engineering for producing abiotic stress-tolerant crop plants. This chapter presents short description of the roles of phytohormones in abiotic stress responses and tolerance followed by reviewing attempts made by the plant biotechnologists for