An improved approach is presented to model the product particle size distribution resulting from grinding in high-pressure roll crusher with the aim to be used in standard high-pressure grinding rolls (HPGR). This approach uses different breakage distribution function parameter values for a single particle compression condition and a bed compression condition. Two materials were used for the experiments; altered Ta-bearing granite and a calc-silicate tungsten ore. A set of experiments was performed with constant operative conditions, while varying a selected condition to study the influence of the equipment set-up on the model. The material was comminuted using a previously determined specific pressing force, varying the feed particle size, roll speed and the static gap. A fourth group of experiments were performed varying the specific pressing force. Experimental results show the high performance of the comminution in a high-pressure environment. The static gap was the key in order to control the product particle size. A mathematical approach to predict the product particle size distribution is presented and it showed a good fit when compared to experimental data. This is the case when a narrow particle size fraction feed is used, but the fit became remarkably good with a multi-size feed distribution. However, when varying the specific pressing force in the case of the calc-silicate material, the results were not completely accurate. The hypothesis of simultaneous single particle compression and bed compression for different size ranges and with different parameters of the distribution function was probed and reinforced by various simulations that exchanged bed compression parameters over the single particle compression distribution function, and vice versa.The main advantages of HPGR lie in energy savings and the simplicity of the process [7]. However, the particle size reduction ratio is lower than that in some other types of mills, such as ball and rod mills. HPGR are used in various configurations such as pre-grinding, hybrid grinding and finish grinding, among others [4]. This is mainly due to the comminution effect under the action of high-pressure rolls, which generates many more internal fractures of particles than other devices [13][14][15], and also generates material with latent cracks for a second stage of milling or even enough to liberate the ore [4,16]. The favourable influence of HPGR performance on downstream beneficiation operations has also been proved, for example, in the ore flotation process [17]. HPGR also appears to have a less negative impact on the environment in terms of lower dust and noise emissions [18].With regard to the description of the model, the mechanism of breakage by compression and shear is dominant in roll crushers [19]. In HPGR, two main breakage mechanisms are observed: single particle compression and bed compression [20][21][22]. Single particle compression is more efficient, but larger particles cause unnecessary liner wear issues [21] and also result in the separatio...