We study the spectral statistics of quantum systems with finite Hilbert spaces. We derive a theorem showing that eigenlevels in such systems cannot be globally uncorrelated, even in the case of fully integrable dynamics, as a consequence of the unfolding procedure. We provide an analytic expression for the power spectrum of the δ n statistic for a model of intermediate statistics with level repulsion but independent spacings, and we show both numerically and analytically that the result is spoiled by the unfolding procedure. Then, we provide a simple model to account for this phenomenon, and test it by means of numerics on the disordered X X Z chain, the paradigmatic model of many-body localization, and the rational Gaudin-Richardson model, a prototypical model for quantum integrability.