2017
DOI: 10.1111/sapm.12192
|View full text |Cite
|
Sign up to set email alerts
|

Breaking Waves and Spectral Analysis of the Two‐Dimensional KdV–Bogoyavlenskii Equation

Abstract: We study here the initial value problem for a two-dimensional Korteweg-de Vries (KdV) equation, first derived by Calogero and Bogoyavlenskii, by means of the inverse scattering transform. The dynamics of the discrete spectrum of an associated Schrödinger operator is far richer than that of KdV equation. Even for optimal eigenvalues, generic smooth solutions may develop shocks with multiple branches and/or cusp singularities in finite time. However, evolution may move poles of the transmission coefficient off t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 41 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?