2014 IEEE International Symposium on Information Theory 2014
DOI: 10.1109/isit.2014.6875376
|View full text |Cite
|
Sign up to set email alerts
|

Breakpoint analysis and permutation codes in generalized Kendall tau and Cayley metrics

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
15
0

Year Published

2016
2016
2023
2023

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 9 publications
(15 citation statements)
references
References 15 publications
0
15
0
Order By: Relevance
“…A generalized transposition φ (i 1 , j 1 , i 2 , j 2 ) ∈ S N , where i 1 ≤ j 1 < i 2 ≤ j 2 ∈ [N ], refers to a permutation that is obtained from swapping two segments, e [i 1 , j 1 ] and e [i 2 , j 2 ], of the identity permutation [5], φ (i 1 , j 1 , i 2 , j 2 ) (1, · · · , i 1 − 1, i 2 , · · · , j 2 , j 1 + 1, · · · , i 2 − 1, i 1 , · · · , j 1 , j 2 + 1, · · · , N ) .…”
Section: B Generalized Cayley Distancementioning
confidence: 99%
See 4 more Smart Citations
“…A generalized transposition φ (i 1 , j 1 , i 2 , j 2 ) ∈ S N , where i 1 ≤ j 1 < i 2 ≤ j 2 ∈ [N ], refers to a permutation that is obtained from swapping two segments, e [i 1 , j 1 ] and e [i 2 , j 2 ], of the identity permutation [5], φ (i 1 , j 1 , i 2 , j 2 ) (1, · · · , i 1 − 1, i 2 , · · · , j 2 , j 1 + 1, · · · , i 2 − 1, i 1 , · · · , j 1 , j 2 + 1, · · · , N ) .…”
Section: B Generalized Cayley Distancementioning
confidence: 99%
“…Example 2. Let π 1 = (3,5,6,7,9,8,1,2,10,4), π 2 = (3, 1, 2, 8,5,6,7,9,10,4). Define ψ i , 1 ≤ i ≤ 4, and σ as follows, 5,6,7,9), ψ 3 = (8), ψ 4 = (1, 2), ψ 5 = (10, 4), σ = (1, 4, 3, 2, 5).…”
Section: Block Permutation Distancementioning
confidence: 99%
See 3 more Smart Citations