“…As demonstrated in Table 5, the proposed model outperforms compared to the existing work. [5] 2019 NB, RF 86.81% Wan Hajarul [6] 2018 DT and RF 82.99% with RF Amin Ul Haq [8] 2018 SVM, DT, RF, NB, DT 86% with SVM Kathleen H. Miaoa [11] 2018 Deep neural network 83.67% Wiharto Wiharto [12] 2019 Ensemble classifier 88.33% Noor Basha [18] 2019 KNN, NB, SVM, DT 85%, with KNN Edsel Ing [19] 2019 SVM and LR 82.71% with LR Márcio Dias [20] 2020 SVM 87.71% Khaled Mohamad [21] 2020 SVM, NB 84.19% with SVM Pooja Rani [22] 2021 NB, LR, NB, SVM, RF 84.79% with SVM Suja Panicker [23] 2020 SVM 90% G. Magesh [24] 2020 RF 89.30% Ashir Javeed [25] 2020 Deep neural network 91.83% G. Saranya [ A hybrid approach to medical decision-making: diagnosis of heart disease … (Tamilarasi Suresh) 1837 5. CONCLUSION Automated intelligent approaches are crucial for timely prediction of heart disease.…”