2024
DOI: 10.3390/cancers16071362
|View full text |Cite
|
Sign up to set email alerts
|

Breast Tumor Tissue Image Classification Using Single-Task Meta Learning with Auxiliary Network

Jiann-Shu Lee,
Wen-Kai Wu

Abstract: Breast cancer has a high mortality rate among cancers. If the type of breast tumor can be correctly diagnosed at an early stage, the survival rate of the patients will be greatly improved. Considering the actual clinical needs, the classification model of breast pathology images needs to have the ability to make a correct classification, even in facing image data with different characteristics. The existing convolutional neural network (CNN)-based models for the classification of breast tumor pathology images … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?