ImportanceA discrepancy on current guidelines and clinical practice exists regarding routine imaging surveillance after mastectomy, mainly regarding the lack of adequate evidence for imaging in this setting.ObjectiveTo investigate the usefulness of imaging surveillance in terms of cancer detection and interval cancer rates after mastectomy with or without reconstruction for patients with prior breast cancer.Data SourcesA comprehensive literature search was conducted in 3 electronic databases—PubMed, ISI Web of Science, and Scopus—without year restriction. References from relevant reviews and eligible studies were also manually searched.Study SelectionEligible studies were defined as those conducting surveillance imaging (mammography, ultrasonography, or magnetic resonance imaging [MRI]) of patients with prior breast cancer after mastectomy with or without reconstruction that presented adequate data to calculate cancer detection rates for each surveillance method.Data Extraction and SynthesisIndependent data extraction by 2 investigators with consensus on discrepant results was performed. A quality assessment of studies was performed using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies–2) template. The generalized linear mixed model framework with both fixed-effects and random-effects models was used to meta-analyze the proportion of cases across studies including 3 variables: surveillance method, reconstruction after mastectomy, and surveillance measure.Main Outcomes and MeasuresThree outcome measures were calculated for each eligible study and each surveillance imaging method within studies: overall cancer detection (defined as ipsilateral cancer, both palpable and nonpalpable) rate per 1000 examinations, clinically occult (nonpalpable) cancer detection rate per 1000 examinations, and interval cancer rate per 1000 examinations.ResultsIn total, 16 studies were eligible for the meta-analysis. The pooled overall cancer detection rates per 1000 examinations were 1.86 (95% CI, 1.05-3.30) for mammography, 2.66 (95% CI, 1.48-4.76) for ultrasonography, and 5.17 (95% CI, 1.49-17.75) for MRI. For mastectomy without reconstruction, the rate of clinically occult (nonpalpable) cancer per 1000 examinations (2.96; 95% CI, 1.38-6.32) and the interval cancer rate per 1000 examinations (3.73; 95% CI, 0.84-3.98) were lower than the overall cancer detection rate (including both palpable and nonpalpable lesions) per 1000 examinations (6.41; 95% CI, 3.09-13.25) across all imaging modalities. The interval cancer rate per 1000 examinations for mastectomy with reconstruction (3.73; 95% CI, 0.41-2.73) was comparable to the pooled cancer detection rate per 1000 examinations (4.73; 95% CI, 2.32-9.63) across all imaging modalities. In all clinical scenarios and imaging modalities, lower rates of clinically occult cancer compared with cancer detection rates were observed.Conclusions and RelevanceLower detection rates of clinically occult—compared with overall—cancer across all 3 imaging modalities challenge the use of imaging surveillance after mastectomy, with or without reconstruction. Findings suggest that imaging surveillance in this context is unnecessary in clinical practice, at least until further studies demonstrate otherwise. Future studies should consider using the clinically occult cancer detection rate as a more clinically relevant measure in this setting.