Zinc is an essential micronutrient for all living organisms. When facing a shortage in zinc supply, plants adapt by enhancing the zinc uptake capacity. The molecular regulators controlling this adaptation are not known. We present the identification of two closely related members of the Arabidopsis thaliana basic-region leucinezipper (bZIP) transcription factor gene family, bZIP19 and bZIP23, that regulate the adaptation to low zinc supply. They were identified, in a yeast-one-hybrid screening, to associate to promoter regions of the zinc deficiency-induced ZIP4 gene of the Zrt-and Irtrelated protein (ZIP) family of metal transporters. Although mutation of only one of the bZIP genes hardly affects plants, we show that the bzip19 bzip23 double mutant is hypersensitive to zinc deficiency. Unlike the wild type, the bzip19 bzip23 mutant is unable to induce the expression of a small set of genes that constitutes the primary response to zinc deficiency, comprising additional ZIP metal transporter genes. This set of target genes is characterized by the presence of one or more copies of a 10-bp imperfect palindrome in their promoter region, to which both bZIP proteins can bind. The bZIP19 and bZIP23 transcription factors, their target genes, and the characteristic cis zinc deficiency response elements they can bind to are conserved in higher plants. These findings are a significant step forward to unravel the molecular mechanism of zinc homeostasis in plants, allowing the improvement of zinc bio-fortification to alleviate human nutrition problems and phytoremediation strategies to clean contaminated soils.biofortification | zinc homeostasis regulation | plant nutrition | abiotic stress | adaptation Z inc is an essential cofactor for many transcription factors, protein interaction domains, and enzymes in plants (1). Plants are thought to control zinc homeostasis by using a tightly regulated network of zinc status sensors and signal transducers controlling the coordinated expression of proteins involved in zinc acquisition from soil, mobilization between organs and tissues, and sequestration within cellular compartments (2). Although candidate genes for the required proteins such as zinc transporters and chelator biosynthesizing enzymes are found, no regulator of such network was ever identified in plants.Zinc influx facilitators, members of the ZIP family of metal transporters, are thought to play a major role in zinc uptake in plants (3). In Arabidopsis there are 15 ZIP genes (4), with ZIP1, ZIP2, ZIP3, and IRT3 functionally characterized as zinc uptake transporters (3, 5). Gene expression analysis has shown that approximately half of the ZIP genes are induced in response to zinc deficiency (3,(5)(6)(7)(8). The ZIP4 gene in particular is strongly induced upon shortage in zinc supply (3,(6)(7)(8).We focused on the promoter of this zinc-deficiency-responsive gene as the starting point for unraveling the regulation of the zinc homeostasis network in plants. By using DNA fragments of the zincdeficiency-responsive Arabidopsi...