Asian cultivated rice consists of two subspecies: Oryza sativa subsp. indica and O. sativa subsp. japonica. Despite the fact that indica rice accounts for over 70% of total rice production worldwide and is genetically much more diverse, a high-quality reference genome for indica rice has yet to be published. We conducted map-based sequencing of two indica rice lines, Zhenshan 97 (ZS97) and Minghui 63 (MH63), which represent the two major varietal groups of the indica subspecies and are the parents of an elite Chinese hybrid. The genome sequences were assembled into 237 (ZS97) and 181 (MH63) contigs, with an accuracy >99.99%, and covered 90.6% and 93.2% of their estimated genome sizes. Comparative analyses of these two indica genomes uncovered surprising structural differences, especially with respect to inversions, translocations, presence/absence variations, and segmental duplications. Approximately 42% of nontransposable element related genes were identical between the two genomes. Transcriptome analysis of three tissues showed that 1,059-2,217 more genes were expressed in the hybrid than in the parents and that the expressed genes in the hybrid were much more diverse due to their divergence between the parental genomes. The public availability of two high-quality reference genomes for the indica subspecies of rice will have large-ranging implications for plant biology and crop genetic improvement.Oryza sativa | reference genomes | BAC-by-BAC strategy | transcriptome R ice is one of the most important food crops in the world and provides more than 20% of the caloric intake for one-half of the world's population. Asian cultivated rice can be divided into two subspecies-that is, Oryza sativa subsp. indica and O. sativa subsp. japonica-which are highly distinctive in geographical distribution, reproductively isolated, and have been shown to have extensive differentiation in genome structure and gene content (1). Indica rice accounts for more than 70% of world rice production (2) and is genetically much more diverse than japonica rice (3). Genomic studies have established that indica rice can be further subdivided into two major varietal groups, indica I and indica II, which have been independently bred and widely cultivated in China and Southeast Asia, respectively (4). Hybrids between these groups usually show strong heterosis, which provided the basis for the great success of hybrid rice in several countries, including China and the United States. For example, Zhenshan 97 (ZS97, indica I) and Minghui 63 (MH63, indica II) are the parents of the elite hybrid Shanyou 63 (SY63) (SI Appendix, Fig. S1 A and B), which exhibits superiority for a large array of agronomic traits including yield, resistance to multiple diseases, wide adaptability, and good eating quality, and thus has been the most widely cultivated hybrid in China over the past three decades (SI Appendix, Fig. S1C).Because of the importance of hybrid rice in helping to ensure a stable and secure food supply for generations, a series of attempts have been...