Background
The prevalence of Parkinson disease (PD) is becoming an increasing concern owing to the aging population in the United Kingdom. Wearable devices have the potential to improve the clinical care of patients with PD while reducing health care costs. Consequently, exploring the features of these wearable devices is important to identify the limitations and further areas of investigation of how wearable devices are currently used in clinical care in the United Kingdom.
Objective
In this scoping review, we aimed to explore the features of wearable devices used for PD in hospitals in the United Kingdom.
Methods
A scoping review of the current research was undertaken and reported according to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. The literature search was undertaken on June 6, 2022, and publications were obtained from MEDLINE or PubMed, Embase, and the Cochrane Library. Eligible publications were initially screened by their titles and abstracts. Publications that passed the initial screening underwent a full review. The study characteristics were extracted from the final publications, and the evidence was synthesized using a narrative approach. Any queries were reviewed by the first and second authors.
Results
Of the 4543 publications identified, 39 (0.86%) publications underwent a full review, and 20 (0.44%) publications were included in the scoping review. Most studies (11/20, 55%) were conducted at the Newcastle upon Tyne Hospitals NHS Foundation Trust, with sample sizes ranging from 10 to 418. Most study participants were male individuals with a mean age ranging from 57.7 to 78.0 years. The AX3 was the most popular device brand used, and it was commercially manufactured by Axivity. Common wearable device types included body-worn sensors, inertial measurement units, and smartwatches that used accelerometers and gyroscopes to measure the clinical features of PD. Most wearable device primary measures involved the measured gait, bradykinesia, and dyskinesia. The most common wearable device placements were the lumbar region, head, and wrist. Furthermore, 65% (13/20) of the studies used artificial intelligence or machine learning to support PD data analysis.
Conclusions
This study demonstrated that wearable devices could help provide a more detailed analysis of PD symptoms during the assessment phase and personalize treatment. Using machine learning, wearable devices could differentiate PD from other neurodegenerative diseases. The identified evidence gaps include the lack of analysis of wearable device cybersecurity and data management. The lack of cost-effectiveness analysis and large-scale participation in studies resulted in uncertainty regarding the feasibility of the widespread use of wearable devices. The uncertainty around the identified research gaps was further exacerbated by the lack of medical regulation of wearable devices for PD, particularly in the United Kingdom where regulations were changing due to the political landscape.