2022
DOI: 10.1155/2022/7471408
|View full text |Cite|
|
Sign up to set email alerts
|

BRFP: An Efficient and Universal Sentence Embedding Learning Model Method Supporting Fused Syntax Combined with Graph Embedding Representation Algorithm

Abstract: Due to the rapidly growing volume of data on the Internet, the methods of efficiently and accurately processing massive text information have been the focus of research. In natural language processing theory, sentence embedding representation is an important method. This paper proposes a new sentence embedding learning model called BRFP (Factorization Process with Bidirectional Restraints) that fuses syntactic information, uses matrix decomposition to learn syntactic information, and fuses and calculates with … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 35 publications
0
1
0
Order By: Relevance
“…This article has been retracted by Hindawi following an investigation undertaken by the publisher [1]. This investigation has uncovered evidence of one or more of the following indicators of systematic manipulation of the publication process:…”
mentioning
confidence: 99%
“…This article has been retracted by Hindawi following an investigation undertaken by the publisher [1]. This investigation has uncovered evidence of one or more of the following indicators of systematic manipulation of the publication process:…”
mentioning
confidence: 99%