2024
DOI: 10.3390/buildings14103104
|View full text |Cite
|
Sign up to set email alerts
|

Bridge Damage Identification Based on Encoded Images and Convolutional Neural Network

Xiaoguang Wang,
Wanhua Li,
Ming Ma
et al.

Abstract: Bridges are prone to damage from various factors, impacting the overall safety of transportation networks. Accurate damage identification is crucial for maintaining bridge integrity. This study proposes a novel method using encoded images and a convolutional neural network (CNN) for bridge damage identification. By converting raw acceleration data into encoded images, the data can be represented from multiple perspectives, enhancing the extraction of essential features related to bridge damage states. The meth… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?