To select the optimal design alternative in off-site construction (OSC) projects, the building industry has turned to design for manufacturing and assembly (DfMA). However, most DfMA developments in the OSC field until now have been on improving the production process in OSC projects and guideline strategies on how to apply them. The application of DfMA guidelines only provides background knowledge to designers on how to design. However, it cannot inspect whether the DfMA concept is fully reflected in a design draft to examine the suitability to the OSC production environment, and it cannot determine the optimal alternative from among multiple design alternatives. Thus, this study developed an integrated assessment model of OSC-DfMA consisting of the OSC-DfMA production suitability assessment model and the OSC-DfMA production efficiency assessment model to support decision-making for selecting the optimal design alternative of an OSC project. In this study, the scope of the main research was limited to precast concrete (PC)-based OSC projects. Firstly, we developed an OSC-DfMA production suitability assessment model to review whether design drafts are suitable in the OSC production environment by applying checklist and matrix techniques. Secondly, we developed an OSC-DfMA production efficiency assessment model to select an optimal alternative in terms of production efficiency among multiple design drafts. Thirdly, we conducted a case study to validate the usefulness of the OSC-DfMA assessment model developed in this study. Finally, we discuss the possibility of using AI technology to consider the facility capacity and resource constraints during the production of OSC building components. The study results are of practical value in providing the basis for expanding the applicability of DfMA by proposing a DfMA assessment model suitable for OSC contexts.