Power is an important aspect of experimental design, because it allows researchers to understand the chance of detecting causal effects if they exist. It is common to specify a desired level of power, and then compute the sample size necessary to obtain that level of power; thus, power calculations help determine how experiments are conducted in practice. Power and sample size calculations are readily available for completely randomized experiments; however, there can be many benefits to using other experimental designs. For example, in recent years it has been established that rerandomized designs, where subjects are randomized until a prespecified level of covariate balance is obtained, increase the precision of causal effect estimators. This work establishes the statistical power of rerandomized treatment-control experiments, thereby allowing for sample size calculators. Our theoretical results also clarify how power and sample size are affected by treatment effect heterogeneity, a quantity that is often ignored in power analyses. Via simulation, we confirm our theoretical results and find that rerandomization can lead to substantial sample size reductions; e.g., in many realistic scenarios, rerandomization can lead to a 25% or even 50% reduction in sample size for a fixed level of power, compared to complete randomization. Power and sample size calculators based on our results are in the R package rerandPower on CRAN.