The burgeoning field of retinal image processing is critical in facilitating early diagnosis and treatment of retinal diseases, which are amongst the leading causes of vision impairment globally. Despite rapid advancements, existing machine learning models for retinal image processing are characterized by significant limitations, including disparities in pre-processing, segmentation, and classification methodologies, as well as inconsistencies in post-processing operations. These limitations hinder the realization of accurate, reliable, and clinically relevant outcomes. This paper provides an in-depth statistical review of extant machine learning models used in retinal image processing, meticulously comparing them based on their internal operating characteristics and performance levels. By adopting a robust analytical approach, our review delineates the strengths and weaknesses of current models, offering comprehensive insights that are instrumental in guiding future research and development in this domain. Furthermore, this review underscores the potential clinical impacts of these models, highlighting their pivotal role in enhancing diagnostic accuracy, prognostic assessments, and therapeutic interventions for retinal disorders. In conclusion, our work not only bridges the existing knowledge gap in the literature but also paves the way for the evolution of more sophisticated and clinically-aligned retinal image processing models, ultimately contributing to improved patient outcomes and advancements in ophthalmic care.