2022
DOI: 10.48550/arxiv.2205.05024
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Bridging the gap: symplecticity and low regularity on the example of the KdV equation

Abstract: Recent years have seen an increasing amount of research devoted to the development of so-called resonance-based methods for dispersive nonlinear partial differential equations. In many situations, this new class of methods allows for approximations in a much more general setting (e.g. for rough data) than, for instance, classical splitting or exponential integrator methods. However, they lack one important property: the preservation of geometric structures. This is particularly drastic in the case of the Korte… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?