Although infectious disease dynamics are often analyzed at the macro-scale, increasing numbers of drug-resistant infections highlight the importance of within-host modeling that simultaneously solves across multiple scales to effectively respond to epidemics. We review multiscale modeling approaches for complex, interconnected biological systems and discuss critical steps involved in building, analyzing, and applying such models within the discipline of model credibility. We also present our two tools: CaliPro, for calibrating multiscale models (MSMs) to datasets, and tunable resolution, for fine- and coarse-graining sub-models while retaining insights. We include as an example our work simulating infection withMycobacterium tuberculosisto demonstrate modeling choices and how predictions are made to generate new insights and test interventions. We discuss some of the current challenges of incorporating novel datasets, rigorously training computational biologists, and increasing the reach of MSMs. We also offer several promising future research directions of incorporating within-host dynamics into applications ranging from combinatorial treatment to epidemic response.