Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Steady internal transport barriers (ITBs) are obtained in FTU at ITER-relevant magnetic field and density (ne0 ≥ 1.3 × 1020 m−3) in almost full non-inductive discharges, sustained by lower hybrid (LH) and electron cyclotron (EC) RF waves sources. Similarly to ITER, only electrons are directly heated which in turn heat ions via collisions and no momentum is injected. Collisions do not affect the mechanisms of turbulence suppression and energy transport. At the highest densities the ion thermal conductivity remains ≤ the ohmic level, while the energy confinement time exceeds the ITER 97-L scaling by about 1.6 times. The ITB radius can be varied in the range 0.2 ≤ r/a ≤ 0.65 modifying the radial profile of the LH driven current, acting mainly on the safety factor q. A liquid lithium limiter (LLL) of innovative design, composed of a mesh of porous capillaries, has been tested successfully for the first time on a medium size tokamak. The LLL surface showed no damage up to the maximum thermal load of 5 MW m−2. With LLL cleaner plasmas are obtained and the particle recycling strongly drops; new interesting regimes of particle transport arise at high density, with highly peaked profiles. Significant progress in disruption mitigation by means of EC power has shown that they can be avoided when absorption occurs directly on the MHD islands driving the disruption. Feedback control/suppression of MHD tearing modes (TM, m = 2) with EC waves has been achieved relying on a real-time detection of the TM and of its radial location. Testing the collective Thomson scattering in ITER-relevant configuration has stressed that avoiding backscattered radiation to the source is very crucial. The theory of the evolution of fishbone-like instabilities driven by LH generated supra-thermal electrons in FTU is outlined, and its relation to the trapped α particles dynamics is stressed.
Steady internal transport barriers (ITBs) are obtained in FTU at ITER-relevant magnetic field and density (ne0 ≥ 1.3 × 1020 m−3) in almost full non-inductive discharges, sustained by lower hybrid (LH) and electron cyclotron (EC) RF waves sources. Similarly to ITER, only electrons are directly heated which in turn heat ions via collisions and no momentum is injected. Collisions do not affect the mechanisms of turbulence suppression and energy transport. At the highest densities the ion thermal conductivity remains ≤ the ohmic level, while the energy confinement time exceeds the ITER 97-L scaling by about 1.6 times. The ITB radius can be varied in the range 0.2 ≤ r/a ≤ 0.65 modifying the radial profile of the LH driven current, acting mainly on the safety factor q. A liquid lithium limiter (LLL) of innovative design, composed of a mesh of porous capillaries, has been tested successfully for the first time on a medium size tokamak. The LLL surface showed no damage up to the maximum thermal load of 5 MW m−2. With LLL cleaner plasmas are obtained and the particle recycling strongly drops; new interesting regimes of particle transport arise at high density, with highly peaked profiles. Significant progress in disruption mitigation by means of EC power has shown that they can be avoided when absorption occurs directly on the MHD islands driving the disruption. Feedback control/suppression of MHD tearing modes (TM, m = 2) with EC waves has been achieved relying on a real-time detection of the TM and of its radial location. Testing the collective Thomson scattering in ITER-relevant configuration has stressed that avoiding backscattered radiation to the source is very crucial. The theory of the evolution of fishbone-like instabilities driven by LH generated supra-thermal electrons in FTU is outlined, and its relation to the trapped α particles dynamics is stressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.