In this paper, we analyze lattice linearity of multiplication and modulo operations. We demonstrate that these operations are lattice linear and the parallel processing algorithms that we study for both these operations are able to exploit the lattice linearity of their respective problems. This implies that these algorithms can be implemented in asynchronous environments, where the nodes are allowed to read old information from each other and are still guaranteed to converge within the same time complexity. These algorithms also exhibit properties similar to snap-stabilization, i.e., starting from an arbitrary state, the system follows the trace strictly according to its specification.