This paper shows that fuzzy control systems satisfying sectorial properties are effective for motion tracking control of robot manipulators. We propose a controller whose structure is composed by a sectorial fuzzy controller plus a full nonlinear robot dynamics compensation, in such a way that this structure leads to a very simple closed-loop system represented by an autonomous nonlinear differential equation. We demonstrate via Lyapunov theory, that the closed-loop system is globally asymptotically stable. Experimental results show the feasibility of the proposed controller.