Whiteness arises from the random scattering of incident light from disordered structures. [1] Opaque white materials have to contain a sufficiently large number of scatterers and therefore usually require thicker, material-rich nanostructures than structural color arising from the coherent interference of light. [2,3] In nature, bright white appearance arises from the dense arrays of pterin pigments in pierid butterflies, [4] guanine crystals in spiders, [5] or leucophore cells in the flexible skin of cuttlefish. [6] A striking example of such whiteness is found in the chitinous networks of white beetles, e.g., Lepidiota stigma and Cyphochilus sp. [7][8][9] Previous research investigating these beetle structures has shown that the chitinous network is one of the most strongly scattering materials in nature, and therefore the question arises whether this structure is evolutionary optimized for strong scattering while minimizing the Most studies of structural color in nature concern periodic arrays, which through the interference of light create color. The "color" white however relies on the multiple scattering of light within a randomly structured medium, which randomizes the direction and phase of incident light. Opaque white materials therefore must be much thicker than periodic structures. It is known that flying insects create "white" in extremely thin layers. This raises the question, whether evolution has optimized the wing scale morphology for white reflection at a minimum material use. This hypothesis is difficult to prove, since this requires the detailed knowledge of the scattering morphology combined with a suitable theoretical model. Here, a cryoptychographic X-ray tomography method is employed to obtain a full 3D structural dataset of the network morphology within a white beetle wing scale. By digitally manipulating this 3D representation, this study demonstrates that this morphology indeed provides the highest white retroreflection at the minimum use of material, and hence weight for the organism. Changing any of the network parameters (within the parameter space accessible by biological materials) either increases the weight, increases the thickness, or reduces reflectivity, providing clear evidence for the evolutionary optimization of this morphology. amount of employed material, thus reducing the weight of the organism. The brilliant white reflection from Cyphochilus beetles is assumed to be important for camouflage among white fungi and in a shady environment.In contrast to periodic photonic materials, for which the optical response is straightforward to calculate, the reflection of light from such disordered network morphologies requires a detailed knowledge of local geometry. [2,3,9,10] For these complex cases, the validity of the diffusion approximation is limited, since single scattering elements are difficult to be identified. [7] To fully understand the correlation between the structure and (optical) properties of complex materials, the detailed real-space structure in combination with a s...