Recent cases of avian influenza H5N1 and the swine-origin 2009 H1N1 have caused a great concern that a global disaster like the 1918 influenza pandemic may occur again. Viral transmission begins with a critical interaction between hemagglutinin (HA) glycoprotein, which is on the viral coat of influenza, and sialic acid (SA) containing glycans, which are on the host cell surface. To elucidate the role of HA glycosylation in this important interaction, various defined HA glycoforms were prepared, and their binding affinity and specificity were studied by using a synthetic SA microarray. Truncation of the N-glycan structures on HA increased SA binding affinities while decreasing specificity toward disparate SA ligands. The contribution of each monosaccharide and sulfate group within SA ligand structures to HA binding energy was quantitatively dissected. It was found that the sulfate group adds nearly 100-fold (2.04 kcal/mol) in binding energy to fully glycosylated HA, and so does the biantennary glycan to the monoglycosylated HA glycoform. Antibodies raised against HA protein bearing only a single N-linked GlcNAc at each glycosylation site showed better binding affinity and neutralization activity against influenza subtypes than the fully glycosylated HAs elicited. Thus, removal of structurally nonessential glycans on viral surface glycoproteins may be a very effective and general approach for vaccine design against influenza and other human viruses.flu vaccine ͉ glycan binding ͉ glycosylation T he highly pathogenic H5N1 and the 2009 swine-origin influenza A (H1N1) viruses have caused global outbreaks and raised a great concern that further changes in the viruses may occur to bring about a deadly pandemic (1, 2). Important contributions to our understanding of influenza infections have come from the studies on hemagglutinin (HA), a viral coat glycoprotein that binds to specific sialylated glycan receptors in the respiratory tract, allowing the virus to enter the cell (3-6). To cross the species barrier and infect the human population, avian HA must change its receptorbinding preference from a terminally sialylated glycan that contains ␣2,3 (avian)-linked to ␣2,6 (human)-linked sialic acid motifs (7), and this switch could occur through only two mutations, as in the 1918 pandemic (8). Understanding the factors that affect influenza binding to glycan receptors is thus critical for developing methods to control any future crossover influenza strains that have pandemic potential.HA is a homotrimeric transmembrane protein with an ectodomain composed of a globular head and a stem region (3). Both regions carry N-linked oligosaccharides (9), which affect the functional properties of HA (10, 11). Among different subtypes of influenza A viruses, there is extensive variation in the glycosylation sites of the head region, whereas the stem oligosaccharides are more conserved and required for fusion activity (11). Glycans near antigenic peptide epitopes interfere with antibody recognition (12), and glycans near the proteolytic ...