Electronics is a field of study ubiquitous in our daily lives, since this discipline is undoubtedly the driving force behind developments in many other disciplines, such as telecommunications, automation, and computer science. Nowadays, electronics is becoming more and more widely applied in life science, thus leading to an increasing interest in bioelectronics that is a major segment of bioengineering. A bioelectronics application that has gained much attention in recent years is the use of sensors for biological samples, with emphasis given to biosensors performing broadband sensing of small-volume liquid samples. Within this context, this work aims at investigating a microfluidic sensor based on a broadband one-port coplanar interdigital capacitor (IDC). The microwave performance of the sensor loaded with lossless materials under test (MUTs) is achieved by using finite-element method (FEM) simulations carried out with Ansoft's high frequency structure simulator (HFSS). The microfluidic channel for the MUT has a volume capacity of 0.054 µL. The FEM simulations show a resonance in the admittance that is reproduced with a five-lumped-element equivalent-circuit model. By changing the real part of the relative permittivity of the MUT up to 70, the corresponding variations in both the resonant frequency of the FEM simulations and the capacitance of the equivalent-circuit model are analyzed, thereby enabling assessment of the permittivity sensitivity of the studied IDC. Furthermore, it is shown that, although the proposed local equivalent-circuit model is able to mimic faithfully the FEM simulations locally around the resonance in the admittance, a higher number of circuit elements can achieve a better agreement between FEM and equivalent-circuit simulation over the entire broad frequency going range from 0.3 MHz to 35 GHz.