An electrically switchable graphene terahertz (THz) modulator with a tunable‐by‐design optical bandwidth is presented and it is exploited to compensate the cavity dispersion of a quantum cascade laser (QCL). Electrostatic gating is achieved by a metal grating used as a gate electrode, with an HfO2/AlOx gate dielectric on top. This is patterned on a polyimide layer, which acts as a quarter wave resonance cavity, coupled with an Au reflector underneath. The authors achieve 90% modulation depth of the intensity, combined with a 20 kHz electrical bandwidth in the 1.9–2.7 THz range. The modulator is then integrated with a multimode THz QCL. By adjusting the modulator operational bandwidth, the authors demonstrate that the graphene modulator can partially compensate the QCL cavity dispersion, resulting in an integrated laser behaving as a stable frequency comb over 35% of the operational range, with 98 equidistant optical modes and a spectral coverage ~1.2 THz. This paves the way for applications in the terahertz, such as tunable transformation‐optics devices, active photonic components, adaptive and quantum optics, and metrological tools for spectroscopy at THz frequencies.