Driving electro-optic modulators in lumped-element (LE) configuration allows for small footprint, reduced power consumption, and improved high-speed performance. The main shortcoming of conventional rectilinear LE modulators are the required high drive-voltages, resulting from their shortened phase-shifters. To address this, we introduce a Mach-Zehnder modulator with meandered phase shifters (M-MZM), which can be driven in LE configuration, while keeping the optical phase shifter length in the same order as traveling-wave modulators (TW-MZMs). A design limitation that needs to be taken into account consists in the optical transit time of the device, that limits the overall electro-optic bandwidth. First, we review the overall power consumption improvement as well as the bandwidth enhancement in LE modulators compared to TW-MZMs, also taking the driver output impedance and parasitics from wire-or bump-bonds into account. Then, we report on the design, implementation, and experimental characterization of carrier-depletion based M-MZMs fabricated on silicon-on-insulator (SOI) wafers using standard CMOS-compatible processes. The fabricated M-MZMs, provided with low (W1), moderately (W2) and highly (W3) doped junctions, require 9.2 Vpp, 5.5 Vpp, and 3.7 Vpp for full extinction, with optical insertion losses of 5 dB, 6.3 dB and 9.1 dB. For all three M-MZMs, open eye diagrams are recorded at 25 Gb/s using a 50 Ω driver and termination. For unterminated M-MZMs, higher data rates could be achieved, provided that a low output impedance driver be wire-or bump-bonded to the modulators. Finally, we compare the power consumption of the M-MZMs with TW-MZMs and show that the M-MZMs feature a 4X reduced power consumption at 25 Gb/s.