Between 20 and 90 MHz frequency-dependent shear viscosities of the polystyrene-cyclohexane mixture of critical composition have been measured at polymer molar weight Mw = 30,000. The viscosity data reveal dispersion, in conformity with relaxation characteristics in the non-critical background contributions to the ultrasonic attenuation, i.e., in the longitudinal viscosity of the critical system. The dispersion behavior is discussed with a view to its effect on the critical dynamics of the liquid near its consolute point. Attention is especially given to the relaxation rates of fluctuations of that system. The data as resulting from ultrasonic attenuation spectroscopy on the one hand and from quasi-elastic light scattering and viscosity measurements on the other hand differ near the critical temperature. It is concluded that likely an additional dispersion exists in the shear viscosity at frequencies below the presently available frequency range of measurement.