The presence of multidirectional correlations in emerging multidimensional data poses a challenge to traditional regression modeling methods. Traditional modeling methods based on matrix or vector, for example, not only overlook the data's multidimensional information and lower model performance, but also add additional computations and storage requirements. Driven by the recent advances in applied mathematics, tensor regression has been widely used and proven effective in many fields, such as sociology, climatology, geography, economics, computer vision, chemometrics, and neuroscience. Tensor regression can explore multidirectional relatedness, reduce the number of model parameters and improve model robustness and efficiency. It is timely and valuable to summarize the developments of tensor regression in recent years and discuss promising future directions, which will help accelerate the research process of tensor regression, broaden the research direction, and provide tutorials for researchers interested in high dimensional regression tasks.