All-solid-state tunable lasers have been widely used in many fields including multi-photon microscopy, time-resolved photoluminescence, atomic physics, and so on owing to their broadband output spectrum range, good beam quality, and low noise. To cover the broad fluorescent line of the laser crystal as much as possible, a birefringent filter (BRF) is always the most popular candidate for acting as a tuning element. In this review, the tuning characteristics of BRF and the design rule as well as its progress in practical application are summarized. Especially, it is worth noting that laser crystal itself begins to act as the BRF for wavelength tuning except for its gain characteristic, which has paved a new way for developing a kind of novel tunable laser. We believe that this review will not only provide a valuable reference for the design of BRF but also lay the foundation for developing a new application of BRF.