2022
DOI: 10.26555/ijain.v8i3.951
|View full text |Cite
|
Sign up to set email alerts
|

Broccoli leaf diseases classification using support vector machine with particle swarm optimization based on feature selection

Abstract: Broccoli is a plant that has many benefits. The flower parts of broccoli contain protein, calcium, vitamin A, vitamin C, and many more. However, in its cultivation, broccoli plants have obstacles such as the presence of pests and diseases that can affect production of broccoli. To avoid this, the authors build a model to identify diseases in broccoli through leaf images with a size of 128x128 pixels. The model is constructed to classify healthy leaves, and disease leaves using the image processing method that … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(2 citation statements)
references
References 23 publications
0
1
0
1
Order By: Relevance
“…SVM is one of the machine learning methods that is easy to implement. The parameter of SVM can be explored through hyperparameters [28]. In this system, SVM is employed to classify MRI images into four classes, namely, pituitary tumor, glioma tumor, meningioma tumor, and no tumor.…”
Section: Support Vector Machinementioning
confidence: 99%
“…SVM is one of the machine learning methods that is easy to implement. The parameter of SVM can be explored through hyperparameters [28]. In this system, SVM is employed to classify MRI images into four classes, namely, pituitary tumor, glioma tumor, meningioma tumor, and no tumor.…”
Section: Support Vector Machinementioning
confidence: 99%
“…SVM sendiri memiliki keunggulan yaitu bekerja lebih baik dibanding metode klasifikasi lain pada dataset bersampel kecil, tidak linier dan memiliki kelas biner (Tao, Sun and Sun, 2018). Meski begitu, SVM memiliki kelemahan ketika diterapkan pada dataset dengan kelas yang tidak seimbang karena sulit mendapatkan hyperplane pemisah optimal (Cervantes et al, 2020;Huang et al, 2021) dan tidak bekerja dengan akurat ketika terlalu banyak fitur yang tidak relevan bagi metode klasifikasi digunakan (Hamid et al, 2021;Ferdinand and Al Maki, 2022).…”
unclassified