Just as geological samples from Earth record the natural history of our planet, astromaterials hold the natural history of our solar system and beyond. Astromaterials acquisition and curation practices have direct consequences on the contamination levels of astromaterials and hence the types of questions that can be answered about our solar system and the degree of precision that can be expected of those answers. Advanced curation was developed as a cross-disciplinary field to improve curation and acquisition practices in existing astromaterials collections and for future sample return activities, including meteorite and cosmic dust samples that are collected on Earth. These goals are accomplished through research and development of new innovative technologies and techniques for sample collection, handling, characterization, analysis, and curation of astromaterials. In this contribution, we discuss five broad topics in advanced curation that are critical to improving sample acquisition and curation practices, including (1) best practices for monitoring and testing of curation infrastructure for inorganic, organic, and biological contamination; (2) requirements for storage, processing, and sample handling capabilities for future sample