G s α, the G protein that transduces receptor-stimulated cAMP generation, mediates sympathetic nervous system stimulation of brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT), which are both potential targets for treating obesity, as well as lipolysis. We generated a mouse line with G s α deficiency in mature BAT and WAT adipocytes (Ad-GsKO). Ad-GsKO mice had impaired BAT function, absent browning of WAT, and reduced lipolysis, and were therefore cold-intolerant. Despite the presence of these abnormalities, Ad-GsKO mice maintained normal energy balance on both standard and high-fat diets, associated with decreases in both lipolysis and lipid synthesis. In addition, Ad-GsKO mice maintained at thermoneutrality on a standard diet also had normal energy balance. Ad-GsKO mice had improved insulin sensitivity and glucose metabolism, possibly secondary to the effects of reduced lipolysis and lower circulating fatty acid binding protein 4 levels. G s α signaling in adipose tissues may therefore affect whole-body glucose metabolism in the absence of an effect on body weight. T he sympathetic nervous system (SNS) regulates energy homeostasis and adiposity through several mechanisms, including activation of nonshivering thermogenesis in brown adipose tissue (BAT), browning (formation of BAT-like "beige" cells) of white adipose tissue (WAT), and stimulation of lipolysis. Although these processes have been shown to be potential targets in treating obesity and diabetes (1-3), ablation of sympathetic nerves (4-6) or their main effectors (norepinephrine and epinephrine) (7) does not result in obesity or insulin resistance. Although mice lacking β adrenergic receptors (β-less mice) do develop obesity (8), it is likely that this effect is not due only to loss of β-adrenergic signaling in adipose tissue.The main mediator of SNS function in adipose tissues is G s α (9, 10), a ubiquitously expressed G protein α-subunit that in adipose tissue couples adrenergic and other receptors, such as the adenosine A2A receptor (11), to the generation of intracellular cAMP. We have previously generated adipose-specific G s α knockout mice (FGsKO) using fatty acid binding protein 4 (FABP4) (aP2)-cre and showed these mice to have significant early mortality and a severely lean phenotype (12). However, the usefulness of this model to examine the role of G s α in mature adipocytes is limited due to both the lack of specificity of FABP4-cre expression in adipose tissue and the presence of a severe defect in adipogenesis due to expression of FABP4, and therefore loss of G s α, during an early step in adipocyte differentiation.Adiponectin is a mature adipocyte marker expressed late in adipocyte differentiation (13). The more recent availability of adiponectin-cre mouse lines (14, 15) has enabled us to generate adipose-specific G s α knockout mice (Ad-GsKO) in which G s α deletion is restricted to mature adipocytes. Despite having loss of BAT function or browning of WAT, Ad-GsKO mice failed to develop obesity on either ...