Lymphatic filariasis is a major tropical disease caused by the mosquito-borne nematodes Brugia and Wuchereria. About 120 million people are infected and at risk of lymphatic pathology such as acute lymphangitis and elephantiasis. Vaccines against filariasis must generate immunity to the infective mosquito-derived third-stage larva (L3) without accentuating immunopathogenic responses to lymphatic-dwelling adult parasites. We have identified two highly expressed genes, designated abundant larval transcript-1 and -2 (alt-1 and alt-2), from each of which mRNAs account for >1% of L3 cDNAs. ALT-1 and ALT-2 share 79% amino acid identity across 125 residues, including a putative signal sequence and a prominent acidic tract. Expression of alt-1 and alt-2 is initiated midway through development in the mosquito, peaking in the infective larva and declining sharply following entry into the host. Humans exposed to Brugia malayi show a high frequency of immunoglobulin G1 (IgG1) and IgG3 antibodies to ALT-1 and -2, distinguishing them from adult-stage antigens, which are targeted by the IgG4 isotype. Immunization of susceptible rodents (jirds) with ALT-1 elicited a 76% reduction in parasite survival, the highest reported for a single antigen from any filarial parasite. ALT-1 and the closely related ALT-2 are therefore strong candidates for a future vaccine against human filariasis.Filarial nematodes are helminth parasites which are responsible for lymphatic filariasis, a tropical disease afflicting some 119 million people (26,28,34). The parasites have a complex life cycle in which mosquito-borne infective third-stage larvae (L3) invade the human body, mature to adult worms, and produce large numbers of newborn larvae (microfilariae) which must transit the mosquito vector in order to develop to L3 (16). Overt disease has a major immunopathologic component, and a prominent risk of vaccination with filarial antigens is exacerbation of pathology (22,27,32). The target of immunopathological reactions, however, is thought to be the longlived adult worm and not the infective larva (23,29).To date, strategies to identify vaccine antigens in filariasis have relied on serum antibodies to define antigens, whether by comparing apparently uninfected subjects with infected patients (11) or by using sera from animals vaccinated with radiation-attenuated parasites (19,20). Among the antigens so discovered have been several with high levels of similarity to host antigens (such as muscle proteins), raising an additional specter of autoimmune induction by vaccination. No recombinant filarial antigen yet tested induces significant degrees of immunity to challenge infection (21, 30), indicating that an alternative criterion needs to be adopted.We describe here a molecular biological approach, the analysis of mRNAs which are highly and selectively expressed by the mosquito-derived larva at the time that it is competent to infect the mammalian host. We sought to identify new antigens which are restricted to this stage and absent from the mature for...