“…The field of neural networks has seen a growing interest in the incorporation of hyperbolic geometry (Peng et al, 2021;Yang et al, 2022b;Zhou et al, 2022b;Vyas et al, 2022;Xiong et al, 2022a), in areas like lexical entailment (Nickel & Kiela, 2017;Gulcehre et al, 2019;Sala et al, 2018), knowledge graphs (Chami et al, 2020;Bai et al, 2021;Sun et al, 2020;Xiong et al, 2022b), image understanding (Khrulkov et al, 2020;Zhang et al, 2020;Atigh et al, 2022;Hsu et al, 2021), and recommender systems (Vinh Tran et al, 2020;Chen et al, 2022;Sun et al, 2021a;Yang et al, 2022c;a). In the realm of graph learning (Gulcehre et al, 2019;Chami et al, 2019;Liu et al, 2019;Yang et al, 2022b), a significant amount of research works generalizing graph convolutions (Kipf & Welling, 2017;Veličković et al, 2018;Hamilton et al, 2017;Yang et al, 2020;2022d;Li et al, 2022;Zhang et al, 2019) in hyperbolic space for a better graph or temporal graph representation (Chami et al, 2019;Liu et al, 2019;Zhang et al, 2021b;Yang et al, 2021b;Bai et al, 2023;Sun et al, 2021b), which has achieved impressive performance.…”