2022
DOI: 10.48550/arxiv.2204.09508
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

BSAL: A Framework of Bi-component Structure and Attribute Learning for Link Prediction

Bisheng Li,
Min Zhou,
Shengzhong Zhang
et al.

Abstract: Given the ubiquitous existence of graph-structured data, learning the representations of nodes for the downstream tasks ranging from node classification, link prediction to graph classification is of crucial importance. Regarding missing link inference of diverse networks, we revisit the link prediction techniques and identify the importance of both the structural and attribute information. However, the available techniques either heavily count on the network topology which is spurious in practice, or cannot i… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 26 publications
0
1
0
Order By: Relevance
“…The field of neural networks has seen a growing interest in the incorporation of hyperbolic geometry (Peng et al, 2021;Yang et al, 2022b;Zhou et al, 2022b;Vyas et al, 2022;Xiong et al, 2022a), in areas like lexical entailment (Nickel & Kiela, 2017;Gulcehre et al, 2019;Sala et al, 2018), knowledge graphs (Chami et al, 2020;Bai et al, 2021;Sun et al, 2020;Xiong et al, 2022b), image understanding (Khrulkov et al, 2020;Zhang et al, 2020;Atigh et al, 2022;Hsu et al, 2021), and recommender systems (Vinh Tran et al, 2020;Chen et al, 2022;Sun et al, 2021a;Yang et al, 2022c;a). In the realm of graph learning (Gulcehre et al, 2019;Chami et al, 2019;Liu et al, 2019;Yang et al, 2022b), a significant amount of research works generalizing graph convolutions (Kipf & Welling, 2017;Veličković et al, 2018;Hamilton et al, 2017;Yang et al, 2020;2022d;Li et al, 2022;Zhang et al, 2019) in hyperbolic space for a better graph or temporal graph representation (Chami et al, 2019;Liu et al, 2019;Zhang et al, 2021b;Yang et al, 2021b;Bai et al, 2023;Sun et al, 2021b), which has achieved impressive performance.…”
Section: Related Workmentioning
confidence: 99%
“…The field of neural networks has seen a growing interest in the incorporation of hyperbolic geometry (Peng et al, 2021;Yang et al, 2022b;Zhou et al, 2022b;Vyas et al, 2022;Xiong et al, 2022a), in areas like lexical entailment (Nickel & Kiela, 2017;Gulcehre et al, 2019;Sala et al, 2018), knowledge graphs (Chami et al, 2020;Bai et al, 2021;Sun et al, 2020;Xiong et al, 2022b), image understanding (Khrulkov et al, 2020;Zhang et al, 2020;Atigh et al, 2022;Hsu et al, 2021), and recommender systems (Vinh Tran et al, 2020;Chen et al, 2022;Sun et al, 2021a;Yang et al, 2022c;a). In the realm of graph learning (Gulcehre et al, 2019;Chami et al, 2019;Liu et al, 2019;Yang et al, 2022b), a significant amount of research works generalizing graph convolutions (Kipf & Welling, 2017;Veličković et al, 2018;Hamilton et al, 2017;Yang et al, 2020;2022d;Li et al, 2022;Zhang et al, 2019) in hyperbolic space for a better graph or temporal graph representation (Chami et al, 2019;Liu et al, 2019;Zhang et al, 2021b;Yang et al, 2021b;Bai et al, 2023;Sun et al, 2021b), which has achieved impressive performance.…”
Section: Related Workmentioning
confidence: 99%