1999
DOI: 10.1016/s0301-7516(98)00046-5
|View full text |Cite
|
Sign up to set email alerts
|

Bubble–particle attachment and detachment in flotation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
110
0
15

Year Published

2006
2006
2017
2017

Publication Types

Select...
8
2

Relationship

0
10

Authors

Journals

citations
Cited by 252 publications
(126 citation statements)
references
References 40 publications
1
110
0
15
Order By: Relevance
“…This behaviour is ascribed to the displacement of the liquid film on the surface of large particles. Also, Ralston et al [38] observed that for quartz particles with sizes between 10 and 60 µm the attachment efficiency increases with decreasing particle size, but for stronger hydrophobic particles the attachment efficiency is less dependent on the particle size.…”
Section: Oxidementioning
confidence: 99%
“…This behaviour is ascribed to the displacement of the liquid film on the surface of large particles. Also, Ralston et al [38] observed that for quartz particles with sizes between 10 and 60 µm the attachment efficiency increases with decreasing particle size, but for stronger hydrophobic particles the attachment efficiency is less dependent on the particle size.…”
Section: Oxidementioning
confidence: 99%
“…(ii) powdered/pulverised coal. These methods have included: film flotation (Fuerstenau et al, 1983;Hanning and Rutter, 1989;Polat et al, 2003), bubble-particle attachment (Nguyen et al, 1998;Ralston et al, 1999), penetration rate (Murata and Naka, 1983) and capillary rise (or Washburn method) (Tampy et al, 1988).…”
Section: Introductionmentioning
confidence: 99%
“…A difi culdade na fl otação de partículas fi nas é atribuída à baixa probabilidade de colisão entre partícula e bolha. Por sua vez, o problema com a fl otação das partículas grossas é devido à ruptura do agregado formado entre a partícula e a bolha (Crawford & Ralston, 1988;Ralston et al, 1999;Rodrigues et al, 2001 A efi ciência de colisão é dominada pelas condições hidrodinâmicas dentro da célula, como a rotação do impelidor, turbulência e nível de suspensão das partículas, enquanto que a adesão é controlada pelas interações físico-químicas nas interfaces de partícula e bolha, como pH, dosagem de coletor, ângulo de contato e tensão superfi cial. Por sua vez, a estabilidade do agregado partícula-bolha depende de ambos os eventos, hidrodinâmicos e físico-químicos (Derjaguin & Dukhin, 1961;Duan et al, 2003;Grano, 2006).…”
Section: Introductionunclassified